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depends on how well the model structure is defined and how the model parameters are
determined. Conceptual models generally have a large number of parameters which
are not directly measurable and must therefore be estimated through model calibra-
tion, i.e. by fitting the simulated outputs of the model to the observed outputs of the
watershed by adjusting the model parameters. A measure of the fit between the
simulated and observed outputs is called a calibration criterion or abjective func-
tion. The goal of calibration is to find those values for the model parameters that
minimize (or maximize, if appropriate) the specified calibration criterion. :

Despite the usefulness and popularity of conceptual watershed models, their
performance has not always been acceptable because of uncertainty in the model
parameter estimates. For example, Johnston and Pilgrim (1976) tried unsuccessfully
for over 2 years to find a unique set of parameters for the Boughton model. The
National Weather Service (NWS), which is responsible for providing river and flood
forecasts for more than 3000 river basins throughout the USA, has expressed similar
concerns with the hydrologic models within the NWS river forecast system
(NWSRFS). As pointed out by Brazil and Hudlow ( 1980): “‘One of the most difficult
problems faced is the calibration of the models within NWSRFS for various parts of
the country’.

During the last two decades, a great many studies on issues relating to conceptual
model calibration have been published (e.g. Ibbitt, 1972; Johnston and Pilgrim, 197¢;
Sorooshian and Dracup, 1980; Restrepo-Posada, 1982; Kuczera, 1983a,b; Gupta and
Sorooshian, 1983; Sorcoshian and Gupta, 1983, 1985; Sorooshian et al., 1983;
Troutman, 1983a,b; Duan et al, 1988). Although these efforts have helped to
increase our understanding of the nature of the calibration -problems, only limited
success in alleviating the severity of the difficulties has been achieved (Sorooshian et
al., 1983; Ibbitt and Hutchinson, 1984). Recently, Duan et al. (1992) conducted a
detailed study of a simple six-parameter conceptual model (SIXPAR) using synthetic
data to identify clearly the nature of the difficulties encountered in conceptual model
calibration. The study found that, despite the simple model structure and the absence
of model structural error or input data error, the parameter estimation problems are
not trivial. Duan et al. summarized these problems as a list of five features
“(see Table 1). ‘

" The primary conclusion of the Duan et al. (1992) study was that the optimization
techniques employed for parameter estimation are not powerful enough to deal with
the response surface conditions encountered in model calibration. The calibration

Table 1
Summary of the five major characteristics complicating the optimization problem in CRR model calibra-

tion

1. Regions of aitraction More than one main convergence region
2. Minor local optima Many small ‘pits’ in each region
3. Roughness Rough response surface with discontinnous derivatives
*4,  Sensitivity Poor and varying sensitivity of response surface in region of optimum

and non-linear parameter interaction
5. Shape Non-convex response surface with long curved ridges
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techniques commonly used rely on direct-search optimization algorithms such as the
Simplex method of Nelder and Mead (1965) and the pattern search method of Hooke
and Jeeves (1961) (see, e.g. Johnston and Pilgrim, 1976; Pickup, 1977; Hendrickson
et al.,, 1988). These algorithms are designed to solve single-optimum problems and are
not able to deal effectively with all of the problems listed in Table 1. Experienced
hydrologists typically cope with the inadequacy of these optimization methods by
use of a manual calibration stage; the optimization algorithms are only used for
fine-tuning of selected parameters. However, manual calibration requires detailed
understanding of the model, which can only be obtained through many years of
calibration experience. Furthermore, it can be very tedious and time-consuming
(Baffaut and Delleur, 1989). Recently, researchers have been. exploring ways to
incorporate ‘expert knowledge’ of conceptual watershed models into the automatic
calibration procedures (Baffaut and Delleur, 1989: Wheater et al., 1989; Harlin,
1991). These schemes are highly model dependent and are difficult to generalize to
other models.

In recent years, many researchers have begun to investigate the use of globally
based optimization methods for model calibration. Brazil (1988) investigated the
use of the adaptive random search (ARS) method (Pronzato et al., 1984) to calibrate

. the soil moisture accounting mode! of the NWSRFS (NWSRFS-SMA), and reported

that the ARS method was capable of producing promising results when used as part
of a multi-level calibration strategy. Wang (1991) reported that the genetic algorithm
(Holland, 1975), with fine-tuning by a local search method, can provide an efficient
and robust means for calibration of the Xinanjiang watershed model.

Duan et al. (1992, 1993) presented a new global optimization method known as the
SCE-UA method (abbreviation for shuffled complex evolution method developed at
The University of Arizona). This method is based on a synthesis of the best features
from several existing methods, including the genetic algorithm, and introduces the
new concept of complex shuffling. The method  was designed specifically for the
purpose of dealing with the peculiar problems encountered in conceptual watershed
model calibration. Extensive testing on a simplified research version of the NWSRFS-
SMA model (i.e. the SIXPAR model) and the full-scale NWSRFS-SMA model
revealed that the SCE-UA method was both effective and efficient, compared with

" other existing global methods, including the ARS method and the multistart Simplex

method (Duan et al., 1992; Sorooshian et al., 1993).

2. Scope of this paper

In the above-mentioned studies, it was found that the effectiveness and efficiency of
the SCE-UA method are sensitive to the choice of algorithmic parameters (Duan et
al., 1992, 1993). This paper presents a review of the essential concepts of the SCE-UA
method and the results of a study conducted to establish guidelines on how to choose

the algorithmic parameters of this method according to the degree of difficulty of the

calibration problem.
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3. The SCE-UA method

3.1. Desirable properties of a global optimization method

improvement; (3) competitive evolution; (4) complex shufiting. The first three con-
cepts are drawn from existing approaches that have been proven successful in the past
{(Holland, 1975; Price, 1978, 1983; Manetsch, 1990; Wang, 1991), and the Jast concept
Wwas recently introduced (Duan et al,, 1992, 1993; Sorooshian et al, 1993). The
synthesis of these elements makes the SCE-UA method effective and robust, and
also flexible and efficient. A general description of the steps of the SCE-UA method
is given below (a more detailed presentation of the theory underlying the SCE-UA
algorithm has been given by Duan et al. (1992, 1893)): _

(1) Generate sample—sample s points randomly in the feasibie parameter
space and compute the criterion value at each point. In the absence of prior informa-
the global optimum, vse a uniform probability
distribution to generate a sample.

(2) Rank points—sort the g points in order of increasing criterion value so that the

first point represents the smallest criterion

, each contain-
ing m points. The complexes are partitioned such that the first complex containg every

Plk—1) + 1 ranked point, the second complex contains every p(k — 1) + 2 ranked
point, and so on, where k — L2,...,m.

(4) Evolve each complex—evolve each complex according to the competitive
complex evolution (CCE) algorithm (which is elaborated below).

{5) Shuffle complexes —combine the points in the evolved complexes into a single
sample population; sort the sample population in order of increasing criterion value;
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shuffle (i.e. re-partition) the sample population into p complexes according to the
procedure spectfied in Step 3.

(6) Check convergence—if any of the pre-specified convergence criteria are
satisfied, stop; otherwise, continue.

(7) Check the reduction in the number of complexes—if the minimum number of
complexes required in the population, pyyy,, is less than p, remove the complex with the
lowest ranked points; set p = p — 1 and s = pm; return to Step 4. If p;, = p, return to
Step 4. (It should be noted that this step is 2 new feature and is added to the version
presented by Duan et al. (1992, 1993).)

The initia! random sampling of the parameter space provides the potential for
locating the global optimum without being biased by pre-specified starting points.
The partition of the population into several communities facilitates a freer and more
extensive expioration of the feasible space in different directions, thereby allowing for
the possibility that the problem has more than one region of attraction. The shuffling
of communities enhances the survivability by a sharing of the information (about the
search space) gained independently by each community.

One key component of the SCE-UA method is the CCE algorithm, as mentioned in
Step 4. This algorithm, based on the Nelder and Mead (1965) Simplex downhill search
scheme, is presented briefly as follows:

(I) Construct a subcomplex by randomly selecting ¢ points from the complex
(community) according to a trapezoidal probability distribution. The probability
distribution is specified such that the best point (i.e. the point with the best function
value) has the highest chance of being chosen to form the subcomplex, and the worst
point has the least chance.

(ID) Identify the worst point of the subcomplex and compute the centroid of the

subcomplex without including the worst point.
(IIT) Attempt a reflection step by reflecting the worst point through the centroid. If

the newly generated point is within the feasible space, go to Step IV; otherwise,

randomly generate a point within the feasible space and go to Step VI.

(IV) If the newly generated point is better than the worst point, replace the worst
point by the new point. Go to Step VII. Otherwise, go to Step V.

(V) Attempt a contraction step by computing a point halfway between the centroid

-and the worst point. If the contraction point is better than the worst point, replace the

worst point by the contraction point and go to Step VII. Otherwise, go to Step V1.

(VI) Randomly generate a point within the feasible space. Replace the worst point
by the randomly generated point. ‘

(VID) Repeat Steps II-VI o times, where @ >1 is the number of consecutive
offspring generated by the same subcomplex.

(VII) Repeat Steps I-VII 3 times, where 33> 1 is the number of evolution steps
taken by each complex before complexes are shuffled.

In the CCE algorithm, each point of a complex is a potential “parent” with the
ability to participate in the process of reproducing offspring. (The terms ‘parent’,
‘reproduction’, ‘offspring’, etc., are borrowed from the literature on the genetic
method for global optimization.) A subcomplex functions like a pair of parents,
except that it may comprise more than two members. Use of a stochastic scheme to
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horoughly, ; in biological evolution. Every member in the population is given at least one chance to
sed on the contribute to the reproduction process before being displaced or discarded. Thus, no
g than the | information contained in the sample population is ignored.

- promising The SCE-UA method is explained in Fig. 1, by use of a two-dimensional example.
ized by use The contour lines represent a function surface with a global optimum located at (4,2)
Irse points, j and a local optimum located at (1,2). Fig. 1(a) shows that a sample poplation
+ offspring. ! containing s (in this case, 10) points is divided into p (two) communities (com-
allows the F plexes), each containing m (five) members, marked by e and =, respectively. As
:oward the : each community undergoes an independent evolution process, one community
ntroduced (marked by *) is converging toward the local optimum, whereas the other (marked
‘e sure the by e} is converging toward the global optimum. The locations of the members in the
IS encoun- two evolved communities at the end of the first evolution cycle are illustrated in Fig.
i€ to stress 1(b} (to demonstrate clearly the scenario that the two complexes were converging

toward two distinct optima, the number of evolution steps taken by each complex, 3,

© was set to a relatively large value of 10). The two evolved communities are shuffled
according to the procedure specified in Step 5. The new memberships of the two
evolved communities after shuffing are displayed in Fig. 1(c), and the two com-
munities at the end of the second evolution cycle are shown in Fig. 1(d). It is clear
that both communities are now converging toward the global optimum.

The CCE algorithm is illustrated graphically in Fig. 2, where the black dots ()
indicate the locations of the points in a complex before the evolution step is taken. A
subcomplex containing g points (in this case, three, i.e. forming a triangle) is selected,
according to a trapezoidal probability distribution, to initiate an evolution step. The
symbol * represents the new points generated by the evolution steps. The ‘reflection’
step, which is implemented by reflecting the worst point in a subcomplex through the
centroid of the other points, is displayed in Figs. 2(a), 2(b), and 2(d). Because the
reflected point has a lower criterion value than the worst point, the worst point is
discarded and replaced by the new point. Thus, an evolution step is completed. In Fig.
2(c), the new point is generated by a ‘contraction’ step (the new point lies halfway
between, the worst point and the centroid of the other points), after rejecting a
reflection step for not improving the criterion value. In Fig. 2(¢), a ‘mutation’ step
is taken by ranidomly selecting a point in the feasible parameter space to replace the
worst point of the subcomplex. This is done after a reflection step is attempted, but
results in a point outside of the feasible parameter space (another scenario in which a
mutation step can be taken is when both the reflection step and the contraction step
do not improve the criterion value). In this example, each subcomplex produces one
offspring, i.e. o = 1. The final complex after § (five) evolution steps is illustrated in

Fig. 2(f).

3.3. Selection of algorithmic parameters

The SCE-UA method contains many probabilistic and deterministic componen ng 3 —
that are controlled by some algorithmic parameters. For the method tform :
- ES
optimally, these parameters must be chosen carefully. They are{ m, the number of o
points in a complex{ ¢," the number of points in a subcomplei},fpr e number of B 000 |
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search capability would be undermined, Conversely, if m is chosen too large, it may
result in excessive use of the computer processing time (CPU) with no certain gain in
effectiveness. Our previous investigation (see, ¢.g. Duan et al., 1993) indicated that, by
setting m to 2n + 1, where # is the number of parameters to be optimized on, and
varying. the number of complexes, p, the SCE-UA algorithm provided better overall
performance in coping W1th a wide range of optimization problems than by i 1ncreasmg
the m value alone.

The number of points in each subcomplex, g, may vary between two and m. By
selecting the value of 7 + 1, the subcomplex is chosen as a Simplex; this defines a first-
order approximation {hyperplane) to the objective function surface and will, there-
fore, give a reasonable estimate of the local improvement direction.

The number of offspring which each subcomplex generates before it is put back into
the complex, «, can be any number greater than or equal to one. If « is equal to one,
only one of the original parents will be replaced. As « is increased, the search becomes
more strongly biased in favor of local search of the parameter space.

The number of evolution steps taken by each complex before the complexes are
shuffled, 3, can be any positive integer. If 3 is small, the complexes will be shuffled
frequently, but will not be able to conduct much independent exploration of the
parameter space; if 3 is large, each complex will rapidly shrink into a small cluster,
and global search effectiveness may be lost.

The required number of complexes, p, is strongly dependent on the nature of the
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Different values for the other two parameters—the number of complexes p and the
minimum number of complexes required in the population p,;,—were tested. How-
ever, the merits of the default values for the four parameters listed above or the
different values assigned to p and py;, were never confirmed. Further, our experience
with the SCE-UA method has indicated that the effectiveness and efficiency of the
algorithm are influenced by the choice of the algorithmic parameters. Therefore, the
main purpose of this paper is to investigate the proper choices for algorithmic
parameters More specifically, a series of experimental studies will be conducted to
examine the proper values for p, puin, @, and 8. When a selected algorithm parameter
is being tested, other parameters will take on exther their defaunit values or the values

explicitly specified in the text.

4. Experimental studies for determining the algorithmic parameters of the SCE-UA
method

4.1. Design of experimental studies

The NWSRFS-SMA model embodies all the difficultics delineated in Table 1. Itis
used by the River Forecast Centers of the NWS to perform real-time river and flood
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Fig. 5. Schematic description of the NWSRFS soil moisture accounting {NWSRFS-SMA) model (from

. Brazil, 1988),
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Table 2

Parameters of the NWSRF S-SMA model

Parameters Description

UZTWM Maximum capacity of the HUPPEr ZOTe tension water storage (mm)

UZFWM Maximum capacity of the uppsr zone free water storage {mm)

LZTWM Maximum capacity of the lower zone tension water storage (mm)

LZFPM Maximum capacity of the lower zone free water primary storage {mm)

LZFSM Maximum capacity of the lower zone free water supplement storage (mm)

ADIMP Additional impervious area {decimal fraction) ‘

Uzx Upper zone free water lateral deplstion rate (day ™)

LZPK " Lower zone primary free water depletion rate (day™)

LZSK Lower zone supplemental free water depletion rate {day™"

ZPERC Mazximum percolation rate (djmensionless)

REXP Exponent of the percolation equation (dimensionless)

PCTIM Impervious fraction of the watershed area (decimal fraction)

RIVA Riparian vegetation area (decimal fraction) :

PFREE : Fraction of water percolating from upper zene which goes directly to lower zone Free
water storage (decimal fraction)

SIDE Ratio of deep recharge to channel baseflow (dimensionfess)

RSERV Fraction of lower zone free waler not transferable to lower zone tension water

{decimal fraction)

forecasts as well as extended streamflow predictions. The NWSRFS-SMA model was
originally developed by Burnash et al. (1973) and modified by the Hydrologic
Research Laboratory of the NW$§ (Peck, 1976; Brazil, 1988). A detailed description
of the model! is available in the literature (e.g. Burnash et al,, 1973; Peck, 1976} and
will not be discussed here. In this study, the research version of the NWSRFS-SMA
model maintained by the Department of Hydrology and Water Resources, The
University of Arizona, was used.

Table 3 :

The true parameter values and the lower and upper parameter bounds used for the synthetic study
Parameter True value Lower bound Upper bound
UZTWM 56.000 10.000 156.000
UZFWM : 46.000 10.000 75.000
LZTWM 131.000 75.000 400.000
LZFPM 162.000 50.000 1000.000
LZFSM 23.000 10.000 ) 300.000
ADIMP 0.173 0.000 0.200
UZK 0.245 0.200 0.400
LZPK ' 0.009 0.001 0.020
LZDK 0.043 0.020 0.250
PCTIM 0.043 0.000 0.100
ZPERC 225.000 5.000 250.000
REXP . 3.650 1.100 4.000
PFREE 0.063 . 0.000 0.600

Parameters not optimized: RSERV = 0.3; RIVA = 0.0; 5SIDE = 0.0,
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Fig. 6. Hydrologic data used for the calibration of the NWSRFS-SMA model.

A schematic description of the NWSRFS-SMA model is presented in Fig. 5. The
model is controlled by 16 parameters (see Table 2). The inputs to the model are the
mean areal precipitation (mm) and the potential evapotranspiration (mm). The out-
puts are the streamflow runoff (cms) at the outlet of the basin and the actual evapo-
transpiration (mm).

The precipitation and potential evapotranspiration data from the time
period between 1 October 1955 and 30 September 1956 from the Leaf River
Basin near Collins, Mississippi, were used as the model inputs. The parameter set
obtained by Brazl (1988) was assumed as the ‘true’ parameter set {see Table 3),

““and using this and thé precipitation and evapotranspiration inputs, @ sequence

of streamflows was generated. This sequence of streamflows was treated as the
‘observed’ streamflow data for the calibration period. The precipitation and
‘observed’ sireamflow time series are displayed in Fig. 6. By using synthetically
generated streamflow data, the precise ‘true” global optimum is known beforehand.
Hence, the experimental studies can be conducted without the influence of errors in
the model structure.

The optimization studies reported here simulated attempts to calibrate selected
parameters of the NWSRFS-SMA model by initiating the search algorithm at
randomly selected points in the feasible parameter space, defined as the hypercube
hounded by the limits of the optimizing parameters as specified in Table 3. Parameters
not being optimized were fixed to their ‘true” values. Up to 13 out of the 16 model
parameters were included for optimization. Three parameters, RSERV, RIVA, and
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Table 4
Optimization of varjous parameters: two-dimensional study resnlts

Parameter groups

Average

A B C D E. F
p=1 NS§® 10 10 10

0 10 o 10

AFEP 99 120 108 92 89 i1z 103

p=2 NS§ 1 10 10 10 10 10 10
AFE 193 220 188 187 184 168 190

* NS, the number of successful rmns. .
® AFE, the average number of function evaluations of the successful runs,

SIDE, were fixed at the following valyes: RSERV =0.3, RIVA — 0.0, and
SIDE = 0.0, These parameters are not optimizable and should not be cha
hydrometeorological conditions indicate otherwise (Peck, 1976).

The objective function (or calibration criterion) used was
root of the difference between the observed flows and si

at occurring, the population of points converged into a
small space, the measure of which was less than 1039 of the feasible space, the run
was also stopped and was termed a failure. ‘

4.2. Experimental Study I

Table 5

Optimization of various parameters: four-dimensional study results

Parameter groups

. Average
-_—
A B C
p=1 NS i0 1¢ i 10
AFE 465 272 359 365
F=2 NS - i0 10 16 10
AFE 537 306 519 521
p=4 NS 10 io ) 10 10
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10
150
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Table 6
Optimization of various parameters: six-dimensional study results
Parameter groups Average
A B
p=1 N8 6 6 6
AFE 675 712 694
p=2 NS 10 0 10
AFE 973 880 927
p=4 NS 10 10 19
AFE 1783 1676 o 1729
p=28 NS 10 10 10
AFE 3517 3172 3344

contain predetermined numbers of parameters n. For example, if #n =2, the first
parameter group would then consist of parameters UZTWM and UZFWM, the
second group LZTWM and LZFPM, and so on. For a given parameter group, 10
independent optimization runs were conducted with p set at different values. The
algorithmic parameter pp;, was set equal to p. For each set of runs, the number of
successes (NS) and the average number of function evaluations (AFE) of the success-
ful runs were recorded.

The results for the two-, four- and six-parameter optimization study cases are
shown in Tables 4, 5, and 6, respectively. In the two- and four-parameter optimiza-
tion cases (i.e. n =2 and n=4), p = 1 was sufficient to ensure that all optimization

Table 7
Test results on selection of py;,; Scheme 1: pyyy = p

Dimensicn, n

2 4 6 8 10 13

p=1 NS 10 10 6 0 0 0
AFE 103 365 694 0 0 0

p=2 NS 10 10 10 In 1 0
AFE 190 521 927 1682 4307 0

p=4 NS 10 10 10 10 §0)]
AFE 584 1730 2749 5949 13299

p=3 NS 10 10 10 10
AFE 3344 5159 8367 14783

p=1i2 . NS : i6 10 10
AFE 7466 11805 22248

p=20 NS . . 10

AFE 33366
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Table 8 4.3, }
Test results on selection of p.y,; Scheme 2: Piin = p/2 !
,‘: . Dimension, » : Ste
! the o
2 4 6 8 10 13 : Scher
p=2 NS 1o 9.7 9 0 0 0 INT(,
AFE I8 315 688 0 0 0 Scher
WEeTe (
p=1 NS o 10 i 1 0 .
AFE 568 1017 1664 3415 0 . Teeon
8 NS 10 10 0 10 evalu
p= :
AFE 1920 2981 5168 13719 ' than ¢
italic-
=12 NS 10 - io 10 is desi
AFE 4446 7239 14596 The
p=20 N3 10 it give
AFE 20526 gener:
asligh
runs would successfully find the ‘true’ parameters. When n — 6, a p value equal to two i the ot
or larger was sufficient to achieve a 100% success rate. 5
The test resulis in this study did not seem to indicate that different combinations of i 44 F
parameters chosen for optimization influenced the effectiveness or efficiency of the
optimization runs. The dimensionality was the primary factor determining the proper ‘ Stug
choice of algorithm parameter P ’ “eachc
param
Table 9 1 valugs
Test results on selection of py,: Scheme 3: py, = 1 are giv
- no cle
Dimension, n
, Table I(
2 4 6 8 10 13 : Test res:
p=2 NS 10 9.7 9 0 0 0 |
AFE 108 315 638 0 0 0 |
p=d 5 S . ) , . |
AFE 398 691 0 0 0 | =1
p=8" NS 9.5 2 0 0 '
AFE 1088 1789 0 0 ;: B=n+
p=12 NS 10 8 0 0
N AFE ' 1864 2650 0 0 B=2n1
' p=20 NS ‘ 10 6 o :
AFE 35776 7410 0 ! G=73n4
; =130 NS : 10 o !
AFE 15176 0 B=d4n+
R p=40 NS 10
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4.3. Experimental Study If

Study II explored the selection of the minimum number of complexes required in
the optimization search, py;,. Three schemes for selecting p,,., were investigated. In
Scheme 1, pr;; was set to p. In Scheme 2, Pmin Was set to the larger value of one and
INT(p/2), where INT is an operator truncating a real number to the nearest integer. In
Scheme 3, py;, was equal to one. Under each scheme, a series of optimization runs
were carried out. The results are shown in Tables 7-9. In these tables, two values were
recorded: the number of successes out of 10 runs and the average number of fanction
evaluations of the successful runs. For problems where dimensionality was smaller
than eight, the resuits were obtained by averaging the results of different groups, The
italic values in the tables indicate the recommended values for p if a 100% success rate
is desired.

The results suggest that Scheme 1 should be the preferred scheme to follow because
it gives the best overall performance in terms of effectiveness and efficiency. Scheme 2
generally fulfilled the promise to improve efficiency, but it was achieved at the cost of
a slight decrease in effectiveness. Scheme 3 performed unsatisfactorily, compared with
the other two schemes.

4.4. Experimental Study IIT

Study IIT explored the proper selection of the number of evolution steps taken by
each complex before shuffling, 3. The study was conducted using the recommended
parameter settings from Scheme 1 in Study IT as the benchmark. The results for yei
values one, n + 1, 2n+ 1,3n-+ 1, and 4n + 1, where 8 = 2n + 1 is the default setting,
are given in Table 10. The italic values indicate the best choices for 3 given n. There is
no clear indication of preferred strategy for selecting # according to the results of this

Table 10
Test results on selection of 8

Dimension, n

2 4 6 8 10 13

B=1 NS y i/ 10 0 9 0 8
' AFE 95 335 906 1754 5027 14895
B=nt1 NS 10 10 10 10 10 i0
AFE 96 . 348 924 1667 5199 14883

g=2n+1* NS~ 0 10 10 10 10 9
AFE 103 365 927 1682 5949 13299

d=3n+1 NS 10 0 10 10 10 10
: AFE 98 297 1109 1802 5190 14856
f=dn+2 NS 10 10 10 10 10 10
AFE 99 331 . 1001 2083 6159 15119

“ Defanit value in the SCE-UA algorithm.
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particular study. It seems clear, however, that, by setting 4 to too small a value, there

is a danger of compromising the effectiveness of the algorithm (sce Table 10, the case i ?;;f%
for f =1 and » = 8, 13). It was also obvious that if the value for B was too large (e.z. ; a dve;
_ "B = 4n+ 1), the efficiency is decreased. Therefore, we continue to recommend the use : we ca;
| of default value of 8 =2n+ 1. tion p
the St
3 4.5. Experimental Study IV _ The
;i . . _ . the N
This study examined the choice of the number of offspring produced by each ;‘ other
subcomplex, o. Again, the recommended settings in Scheme 1 of Study IT were 1 encou
used as a benchmark for comparison purpose. The results for a =1 and a = 2, | diffict
where the former is the default setting, are shown in Table 11. The results clearly " There
show that the default setting is far superior to the second setting. | here
5 divers
4.6. Summary of the results - : necest
) : o . : emple
We have conducted extensive numerical studies to investigate the proper selection
of four algorithmic parameters of the SCE-UA method—p, py,, o, and 3. The first
experimental study found that, no matter what parameters were chosen for optimiza- 6. Acl
tion, the SCE-UA method was consistently able to find the ‘true’ parameters, pro- )
vided that a sufficiently large value for p, the number of complexes, was given. . Par
Experimental Study II investigated three schemes for selecting po,: (1) Prin = P3 Foun
. (2) Prin = 2/2; (3) Prin = 1. It was recommended that Scheme 1, which sets Puin Resea
L equal to p, should be used. Study 111 examined the selection of 8. The results did
b not give a clear indication of the preferred choice, but did, however, implicate the
shortcomings of choosing a value that is too small or too large. Therefore, we 7 Rei
continue to recommend that the default value of 27 + 1 should be used. Study 1V - e
clearly showed that the value for a should be set to one, the default value. : Baffaul
] Ma
. : Brazil,
5. Conclusions o Dey
’ Brazil,
The inability to find the global optima for parameters of conceptual watershed ; ,;Oer:
’ : Burnas
Table 11 con
Test results on selection of o ' Duan
Dimension, »n : Du:;f
B 2 4 6 8 10 13 Du;fr
a=1 NS 10 10 10 10 10 10 Gu e?;‘
AFE 103 365 ?27 1682 5949 13299 7 ];ar
N a=2 NS 9 o 0 i 0 0 Harlin.
: AFE 254 0 0 0 it 0 No
Hendri

2 Default value in the SCE-UA algorithm. alg
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models by conventional optimization methods has, in the past, caused deep frustra-
tion among model users and thus limited the usefulness of snch models. With the
advent of a newly developed global optimization method——the SCE-UA method-—
we can now produce reliable estimates of global optima for large complex optimiza-
tion problems. The extensive experimental studies presented here illustrate how to use
the SCE-UA method in an efficient and effective manner.

The experimental studies were carried out by using a complex watershed model—
the NWSRFS-SMA model—as a test problem. It is our belief, as well as that of many
other researchers and practitioners, that this model embodies many typical problems
encountered in the calibration of watershed models, and that it is one of the more
difficult watershed models to calibrate (Brazil and Hudlow, 1980; Duan et al., 1992).
Therefore, the recommended values for the SCE-UA algorithmic parameters derived
here can be construed as guidelines for most applications. However, owing to the
diverse and peculiar nature of the modeling problems we face every day, it may be
necessary that experimental procedures similar to those delineated in this paper be
employed to derive the preferred algorithmic parameters for a particular problem.
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